Part Number Hot Search : 
3216X7R 0TQCN MSZ52 68701 M378T 225025 24NPB 44C256
Product Description
Full Text Search
 

To Download TDA8948J Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TDA8948J
4-channel audio amplifier
Rev. 01 -- 27 February 2008 Product data sheet
1. General description
The TDA8948J contains four identical audio power amplifiers. The TDA8948J can be used as four Single-Ended (SE) channels with a fixed gain of 26 dB, two times Bridge-Tied Load (BTL) channels with a fixed gain of 32 dB or two times SE channels (26 dB gain) plus one BTL channel (32 dB gain) operating as a 2.1 system. The TDA8948J comes in a 17-pin Dil-Bent-Sil (DBS) power package. The TDA8948J is pin compatible with the TDA8944AJ, TDA8946AJ and TDA8947J. The TDA8948J contains a unique protection circuit that is solely based on multiple temperature measurements inside the chip. This gives maximum output power for all supply voltages and load conditions with no unnecessary audio holes. Almost any supply voltage and load impedance combination can be made as long as thermal boundary conditions (number of channels used, external heat sink and ambient temperature) allow it.
2. Features
2.1 Functional features
I SE: 1 W to 18 W, BTL: 4 W to 36 W operation possibility (2.1 system) Soft clipping. I Standby and mute mode. I No on/off switching plops. I Low standby current. I High supply voltage ripple rejection. I Outputs short-circuit protected to ground, supply and across the load. I Thermally protected. I Pin compatible with TDA8944AJ, TDA8946AJ and TDA8947J.
3. Applications
I I I I Television PC speakers Boom box Mini and micro audio receivers
NXP Semiconductors
TDA8948J
4-channel audio amplifier
4. Quick reference data
Table 1. Quick reference data SE: VCC = 17 V; Tamb = 25 C; RL = 4 ; fi = 1 kHz; VMODE1 = VCC; VMODE2 = VCC; measured in test circuit Figure 11; unless otherwise specified. BTL: VCC = 17 V; Tamb = 25 C; RL = 8 ; f = 1 kHz; VMODE1 = VCC; VMODE2 = VCC; measured in test circuit Figure 11; unless otherwise specified. Symbol VCC Iq Istb Po(SE) Parameter supply voltage quiescent current standby current SE output power Conditions operating no (clipping signal) VCC = 17 V; RL = VCC = 17 V; see Figure 7: THD = 10 %; RL = 4 THD = 0.5 %; RL = 4 VCC = 20 V: THD = 10 %; RL = 4 Po(BTL) BTL output power VCC = 17 V; see Figure 7: THD = 10 %; RL = 8 THD = 0.5 %; RL = 8 VCC = 20 V: THD = 10 %; RL = 8 THD Gv SVRR total harmonic distortion voltage gain SE; Po = 1 W BTL; Po = 1 W SE BTL supply voltage ripple SE: rejection fripple = 1 kHz fripple = 100 Hz to 20 kHz BTL: fripple = 1 kHz fripple = 100 Hz to 20 kHz
[1] [2] [3]
[4] [4] [4] [4] [1] [2] [3]
Min 9 -
Typ 17 100 -
Max 26 28 145 10
Unit V V mA A
6.5 -
8 6
-
W W
-
12
-
W
14 -
16 12
-
W W
25 31 -
24 0.1 0.05 26 32 60 60
0.5 0.5 27 33 -
W % % dB dB dB dB
-
65 65
-
dB dB
A minimum load is required at supply voltages of VCC > 22 V; RL = 3 for SE and RL = 6 for BTL. The amplifier can deliver output power with non-clipping output signals into nominal loads as long as the ratings of the IC are not exceeded. With a load connected at the outputs the quiescent current will increase.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
2 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
[4]
Supply voltage ripple rejection is measured at the output with a source impedance RSOURCE = 0 at the input and with a frequency range from 20 Hz to 22 kHz (unweighted). The ripple voltage is a sine wave with a frequency fripple and an amplitude of 300 mV (RMS), which is applied to the positive supply rail.
5. Ordering information
Table 2. Ordering information Package Name TDA8948J DBS17P Description DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm) Version SOT243-1 Type number
6. Block diagram
VCC1
3 IN1+ 8
60 k +
VCC2
16
+
1
OUT1+
IN2+
6
60 k
+
-
4
OUT2-
IN3+
9
60 k
+
-
14
OUT3-
IN4+
12
60 k
+
+
17
OUT4+
CIV
13 VCC
SHORT-CIRCUIT AND TEMPERATURE PROTECTION
SVR
11
0.5VCC
VREF
SGND 7 STANDBY ALL MUTE ALL ON 1 + 2 MUTE 3 + 4 ON 3 + 4 2 GND1 15 GND2
010aaa049
MODE1
10
TDA8948J
MODE2
5
Fig 1.
Block diagram
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
3 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
7. Pinning information
7.1 Pinning
OUT1+ GND1 VCC1 OUT2- MODE2 IN2+ SGND IN1+ IN3+
1 2 3 4 5 6 7 8 9
TDA8948J
MODE1 10 SVR 11 IN4+ 12 CIV 13 OUT3- 14 GND2 15 VCC2 16 OUT4+ 17
010aaa046
Fig 2.
Pin configuration diagram
7.2 Pin description
Table 3. Symbol OUT1+ GND1 VCC1 OUT2- MODE2 IN2+ SGND IN1+ IN3+ MODE1 SVR IN4+ CIV OUT3- Pin description Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Description non inverted loudspeaker output of channel 1 ground of channels 1 and 2 supply voltage channels 1 and 2 inverted loudspeaker output of channel 2 mode selection 2 input: Mute and On mode for channels 3 and 4 input channel 2 signal ground input channel 1 input channel 3 mode selection 1 input: Standby, Mute and On mode for all channels half supply voltage decoupling (ripple rejection) input channel 4 common input voltage decoupling inverted loudspeaker output of channel 3
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
4 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
Pin description ...continued Pin 15 16 17 Description ground of channels 3 and 4 supply voltage channels 3 and 4 non inverted loudspeaker output of channel 4
Table 3. Symbol GND2 VCC2 OUT4+
8. Functional description
8.1 Input configuration
The input cut-off frequency is: 1 f i ( cut - off ) = ---------------------------2 ( R i x C i ) For SE application Ri = 60 k and Ci = 220 nF: 1 f i ( cut - off ) = ---------------------------------------------------------------- = 12 Hz 3 -9 2 ( 60 x 10 x 220 x 10 ) For BTL application Ri = 30 k and Ci = 470 nF: 1 f i ( cut - off ) = ---------------------------------------------------------------- = 11 Hz 3 -9 2 ( 30 x 10 x 470 x 10 ) (3) (2) (1)
As shown in Equation 2 and Equation 3, large capacitor values for the inputs are not necessary, so the switch-on delay during charging of the input capacitors can be minimized. This results in a good low frequency response and good switch-on behavior.
8.2 Power amplifier
The power amplifier is a BTL and/or SE amplifier with an all-NPN output stage, capable of delivering a peak output current of 4 A. Using the TDA8948J as a BTL amplifier offers the following advantages:
* * * *
Low peak value of the supply current Ripple frequency on the supply voltage is twice the signal frequency No expensive DC-blocking capacitor Good low frequency performance
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
5 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
8.2.1 Output power measurement
The output power as a function of the supply voltage is measured on the output pins at THD = 10 %; see Figure 7. The maximum output power is limited by the supply voltage (VCC = 26 V) and the maximum output current (IO = 4 A repetitive peak current). For supply voltages VCC > 22 V, a minimum load is required; see Figure 5:
* SE: RL = 3 * BTL: RL = 6
8.2.2 Headroom
Typical CD music requires at least 12 dB (factor 15.85) dynamic headroom, compared to the average power output, for transferring the loudest parts without distortion. The Average Listening Level (ALL) music power, without any distortion, yields:
* SE at Po(SE) = 5 W, VCC = 17 V, RL = 4 and THD = 0.2 %:
5 10 P o ( ALL )SE = --------------- = 315 mW 15.85
3
(4)
* BTL at Po(BTL) = 10 W, VCC = 17 V, RL = 8 and THD = 0.1 %:
10 10 P o ( ALL )BTL = ------------------ = 630 mW 15.85
3
(5)
The power dissipation can be derived from Figure 8 (SE and BTL) for a headroom of 0 dB and 12 dB, respectively.
Table 4. Headroom 0 dB 12 dB Power rating as function of headroom Power output SE Po = 5 W Po(ALL) = 315 mW BTL Po = 10 W Po(ALL) = 630 mW Power dissipation (all channels driven) P = 17 W P=9W
For heat sink calculation at the average listening level, a power dissipation of 9 W can be used.
8.3 Mode selection
The TDA8948J has three functional modes which can be selected by applying the proper DC voltage to pin MODE1. Standby - The current consumption is very low and the outputs are floating. The device is in standby mode when VMODE1 < 0.8 V, or when the MODE1 pin is grounded. In standby mode, the function of pin MODE2 has been disabled. Mute - The amplifier is DC-biased, but not operational (no audio output). This allows the input coupling capacitors to be charged to avoid pop-noise. The device is in mute mode when 4.5 V < VMODE1 < (VCC - 3.5 V).
TDA8948J_1 (c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
6 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
On - The amplifier is operating normally. The on mode is activated at VMODE1 > (VCC - 2.0 V). The output of channels 3 and 4 can be set to mute or on mode. The output channels 3 and 4 can be switched on/off by applying a proper DC voltage to pin MODE2, under the condition that the output channels 1 and 2 are in the on mode (see Figure 3).
Table 5. MODE1 0 V to 0.8 V 4.5 V to (VCC - 3.5 V) (VCC - 2.0 V) to VCC Mode selection Channel 1 and 2 MODE2 0 V to VCC 0 V to VCC 0 V to (VCC - 3.5 V) (VCC - 2 V) to VCC Standby mode Mute mode On mode On mode Channel 3 and 4 (sub woofer) Standby mode Mute mode Mute mode On mode
Voltage on pin
all standby
all mute
channels 1 + 2: on channels 3 + 4: on or mute
0.8
4.5
VCC -3.5
VCC -2.0 VCC VMODE1
channels 3 + 4: mute
channels 3 + 4: on
VCC -3.5
mdb016
VCC -2.0
VCC VMODE2
Fig 3.
Mode selection
8.4 Supply voltage ripple rejection
The Supply Voltage Ripple Rejection (SVRR) is measured with an electrolytic capacitor of 150 F on pin SVR using a bandwidth of 20 Hz to 22 kHz. Figure 10 illustrates the SVRR as function of the frequency. A larger capacitor value on pin SVR improves the ripple rejection behavior at the lower frequencies.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
7 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
8.5 Built-in protection circuits
The TDA8948J contains two types of detection sensors: one measures local temperatures of the power stages and one measures the global chip temperature. At a local temperature of approximately 185 C or a global temperature of approximately 150 C, this detection circuit switches off the power stages for 2 ms. High-impedance of the outputs is the result. After this time period the power stages switch on automatically and the detection will take place again; still a too high temperature switches off the power stages immediately. This protects the TDA8948J against shorts to ground, to the supply voltage and across the load, and against too high chip temperatures. The protection will only be activated when necessary, so even during a short-circuit condition, a certain amount of (pulsed) current will still be flowing through the short, just as much as the power stage can handle without exceeding the critical temperature level.
9. Limiting values
Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol VCC VI IORM Tstg Tamb Ptot VCC(sc)
[1]
Parameter supply voltage input voltage repetitive peak output current storage temperature ambient temperature total power dissipation
Conditions operating no (clipping) signal non-operating [1]
Min -0.3 -0.3 -0.3 -55 -40 -
Max +26 +28 VCC + 0.3 4 +150 +85 69 24
Unit V V V A C C W V
supply voltage (short circuit) -
The amplifier can deliver output power with non-clipping output signals into nominal loads as long as the ratings of the IC are not exceeded.
10. Thermal characteristics
Table 7. Symbol Rth(j-a) Rth(j-c) Thermal characteristics Parameter thermal resistance from junction to ambient thermal resistance from junction to case Conditions in free air all channels driven Typ 40 2 Unit K/W K/W
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
8 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
11. Static characteristics
Table 8. Static characteristics VCC = 17 V; Tamb = 25 C; RL = 8 ; VMODE1 = VCC; VMODE2 = VCC; VI = 0 V; measured in test circuit Figure 11; unless otherwise specified. Symbol Supply VCC Iq Istb Output pins VO VO(offset) VMODE1 output voltage [4] [5]
Parameter supply voltage quiescent current standby current
Conditions operating no (clipping) signal VCC = 17 V; RL = [1] [2] [3]
Min 9 -
Typ 17 100 9 -
Max 26 28 145 10 170 VCC 0.8 VCC 20 20
Unit V V mA A V mV V V V A A
differential output voltage offset BTL mode voltage on pin MODE1 on mode mute mode standby mode
Mode selection pins VCC - 2.0 4.5 0
[6]
-
VCC - 3.5 V
VMODE2 IMODE1 IMODE2
[1] [2] [3] [4] [5] [6]
voltage on pin MODE2 current on pin MODE1 current on pin MODE2
on mode: channels 3 and 4 mute mode: channels 3 and 4 0 V < VMODE1 < (VCC - 3.5 V) 0 V < VMODE2 < (VCC - 3.5 V)
VCC - 2.0 0 -
VCC - 3.5 V
A minimum load is required at supply voltages of VCC > 22 V: RL = 3 for SE and RL = 6 for BTL. The amplifier can deliver output power with non-clipping output signals into nominal loads as long as the ratings of the IC are not exceeded. With a load connected at the outputs the quiescent current will increase. The DC output voltage, with respect to ground, is approximately 0.5 VCC. VO(offset) = |VOUT+ - VOUT-| Channels 3 and 4 can only be set to mute or on mode by MODE2 when VMODE1 > VCC - 2.0 V.
12. Dynamic characteristics
Table 9. Dynamic characteristics SE VCC = 17 V; Tamb = 25 C; RL = 4 ; fi = 1 kHz; VMODE1 = VCC; VMODE2 = VCC; measured in test circuit Figure 11; unless otherwise specified. Symbol Po(SE) Parameter SE output power Conditions VCC = 17 V; see Figure 7 THD = 10 %; RL = 4 THD = 0.5 %; RL = 4 VCC = 20 V THD = 10 %; RL = 4 THD Gv Zi
TDA8948J_1
Min 6.5 25 40
Typ 8 6 12 0.1 26 60
Max 0.5 27 -
Unit W W W % dB k
total harmonic distortion voltage gain input impedance
Po = 1 W -
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
9 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
Table 9. Dynamic characteristics SE ...continued VCC = 17 V; Tamb = 25 C; RL = 4 ; fi = 1 kHz; VMODE1 = VCC; VMODE2 = VCC; measured in test circuit Figure 11; unless otherwise specified. Symbol Vn(o) SVRR Vo(mute) cs |Gv|
[1] [2]
Parameter output noise voltage supply voltage ripple rejection mute output voltage channel separation voltage gain difference
Conditions fripple = 1 kHz fripple = 100 Hz to 20 kHz RSOURCE = 0 [1] [2] [2] [3]
Min 50 -
Typ 150 60 60 60 -
Max 150 1
Unit V dB dB V dB dB
The noise output voltage is measured at the output in a frequency range from 20 Hz to 22 kHz (unweighted), with a source impedance RSOURCE = 0 at the input. Supply voltage ripple rejection is measured at the output, with a source impedance RSOURCE = 0 at the input and with a frequency range from 20 Hz to 22 kHz (unweighted). The ripple voltage is a sine wave with a frequency fripple and an amplitude of 300 mV (RMS), which is applied to the positive supply rail. Output voltage in mute mode is measured with VMODE1 = VMODE2 = 7 V, and Vi = 1 V (RMS) in a bandwidth from 20 Hz to 22 kHz, including noise.
[3]
Table 10. Dynamic characteristics BTL VCC = 17 V; Tamb = 25 C; RL = 8 ; f = 1 kHz; VMODE1 = VCC; VMODE2 = VCC; measured in test circuit Figure 11; unless otherwise specified. Symbol Po(BTL) Parameter BTL output power Conditions VCC = 17 V; see Figure 7 THD = 10 %; RL = 8 THD = 0.5 %; RL = 8 VCC = 20 V THD = 10 %; RL = 8 THD Gv Zi Vn(o) SVRR Vo(mute) cs |Gv|
[1] [2]
Min 14 31 20
[1] [2] [2] [3]
Typ 16 12 24 0.05 32 30 200 65 65 65 -
Max 0.5 33 250 1
Unit W W W % dB k V dB dB V dB dB
total harmonic distortion voltage gain input impedance noise output voltage supply voltage ripple rejection mute output voltage channel separation voltage gain difference
Po = 1 W fripple = 1 kHz fripple = 100 Hz to 20 kHz RSOURCE = 0 -
50 -
The noise output voltage is measured at the output in a frequency range from 20 Hz to 22 kHz (unweighted), with a source impedance RSOURCE = 0 at the input. Supply voltage ripple rejection is measured at the output, with a source impedance RSOURCE = 0 at the input and with a frequency range from 20 Hz to 22 kHz (unweighted). The ripple voltage is a sine wave with a frequency fripple and an amplitude of 300 mV (RMS), which is applied to the positive supply rail. Output voltage in mute mode is measured with VMODE1 = VMODE2 = 7 V, and Vi = 1 V (RMS) in a bandwidth from 20 Hz to 22 kHz, including noise.
[3]
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
10 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
107 Vo (V) 106 105 104 103 102 10 1
coc005
0
4
8
12
20 16 VMODE1 (V)
a. BTL; VCC = 17 V; Vi = 50 mV. Fig 4. AC output voltage as a function of voltage on pin MODE1
30 Po(max) (W) 20
(2) (3)
010aaa111
60 Po(max) (W)
010aaa112
(4)
40
(4)
(3)
(2)
(1)
(5)
(1)
10
20
(5)
0 8 12 16 20 24 VP (V) 28
0 8 12 16 20 24 VP (V) 28
fi =1 kHz (1) 1 SE at THD = 10 % (2) 2 SE at THD = 10 % (3) 3 SE at THD = 10 % (4) 4 SE at THD = 10 % (5) 8 SE at THD = 10 %
fi = 1 kHz (1) 16 BTL at THD = 10 % (2) 8 BTL at THD = 10 % (3) 6 BTL at THD = 10 % (4) 4 BTL at THD = 10 % (5) 2 BTL at THD = 10 %
a. SE: THD = 10 %; one channel Fig 5.
b. BTL: THD = 10 %; one channel
Maximum output power as a function of supply voltage at various loads
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
11 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
102 THD + N (%) 10
mce488
102 THD + N (%) 10
mce487
1
1
10-1
10-1
10-2 10-1
1
10
Po (W)
102
10-2 10-1
1
10
Po (W)
102
VCC = 17 V; fi = 1 kHz; RL = 4 .
VCC = 17 V; fi = 1 kHz; RL = 8 .
a. SE Fig 6.
b. BTL
Total harmonic distortion-plus-noise as a function of output power
10 THD + N (%) 1
mce489
10 THD + N (%) 1
mce490
10-1
10-1
10-2 10
102
103
104
f (Hz)
105
10-2 10
102
103
104
f (Hz)
105
VCC = 17 V; Po = 1 W; RL = 4 .
VCC = 17 V; Po = 1 W; RL = 8 .
a. SE Fig 7.
b. BTL
Total harmonic distortion-plus-noise as a function of frequency
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
12 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
20 Ptot (W) 16
010aaa430
20 Ptot (W) 16
010aaa432
12
12
8
8
4
4
0 0 4 8 12 16 Po (W) 20
0 0 4 8 12 16 Po (W) 20
VCC = 17 V; RL = 4 .
VCC = 17 V; RL = 8 .
a. SE Fig 8.
b. BTL
Total power dissipation as a function of channel output power per channel (worst case, all channels driven)
0 cs (dB) -20
mce495
0 cs (dB) -20
mce496
-40
-40
-60
-60
-80
-80
-100 10
102
103
104 f (Hz)
105
-100 10
102
103
104 f (Hz)
105
VCC = 17 V; RL = 4 .
VCC = 17 V; RL = 8 .
a. SE Fig 9.
b. BTL
Channel separation as a function of frequency (no band-pass filter applied)
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
13 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
0 SVRR (dB) -20
mce497
0 SVRR (dB) -20
mce498
-40
-40
-60
-60
-80 10
102
103
104
f (Hz)
105
-80 10
102
103
104
f (Hz)
105
VCC = 17 V; RSOURCE = 0 ; Vripple = 300 mV (RMS). A band-pass filter of 20 Hz to 22 kHz has been applied. Inputs short-circuited.
VCC = 17 V; RSOURCE = 0 ; Vripple = 300 mV (RMS). A band-pass filter of 20 Hz to 22 kHz has been applied. Inputs short-circuited.
a. SE
b. BTL
Fig 10. Supply voltage ripple rejection as a function of frequency
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
14 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
13. Application information
13.1 Application diagrams
VCC VCC1 3
220 nF Vi 220 nF Vi
VCC2 16
+
100 nF
1000 F
IN1+ 8
60 k
+
1 OUT1+ + -
RL4
IN2+ 6
60 k
+
-
4 OUT2- - +
RL4
IN3+ 9
470 nF 60 k Vi
+
-
14 OUT3- - + 17 OUT4+
470 F RL8
IN4+ 12
60 k
+
+
CIV 13 VCC VCC
10 k 50 k 100 k 270 22 F
SHORT-CIRCUIT AND TEMPERATURE PROTECTION
SVR 11 0.5V CC
47 F VREF
7.5 V
BC547 BC547
microcontroller
1.5 k
2.2 F
SGND 7 MODE1 10 MODE2 5 STANDBY ALL MUTE ALL ON 1 + 2 MUTE 3 + 4 ON 3 + 4
VCC
TDA8948J
2 GND1 15 GND2
010aaa050
Fig 11. Typical application diagram without on/off switching plops Table 11. Amplifier selection by microcontroller Microcontroller with open-collector output; see Figure 11. Microcontroller LOW HIGH Channels 1 and 2 On mode Mute mode Channels 3 and 4 On mode Mute mode
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
15 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
VCC VCC1 3
220 nF Vi 220 nF Vi
VCC2 16
+
100 nF
1000 F
IN1+ 8
60 k
+
1 OUT1+ + - 4 OUT2- - +
RL4 RL4
IN2+ 6
60 k
+
-
IN3+ 9
470 nF 60 k Vi
+
-
14 OUT3- - + 17 OUT4+
470 F RL8
IN4+ 12
60 k
+
+
CIV 13 VCC
SHORT-CIRCUIT AND TEMPERATURE PROTECTION
22 F
SVR 11 0.5V CC
150 F VREF
SGND 7
MICROCONTROLLER
MODE1 10 MODE2 5
STANDBY ALL MUTE ALL ON 1 + 2 MUTE 3 + 4 ON 3 + 4
VCC
TDA8948J
2 GND1 15 GND2
010aaa051
Fig 12. Application diagram with one pin control and reduction of capacitor
Remark: Because of switching inductive loads, the output voltage can rise beyond the maximum supply voltage of 28 V. At high supply voltages, it is recommended to use (Schottky) diodes to the supply voltage and ground.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
16 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
13.2 Printed-circuit board
13.2.1 Layout and grounding
To obtain a high-level system performance, certain grounding techniques are essential. The input reference grounds have to be tied with their respective source grounds and must have separate tracks from the power ground tracks; this will prevent the large (output) signal currents from interfering with the small AC input signals. The small signal ground tracks should be physically located as far as possible from the power ground tracks. Supply and output tracks should be as wide as possible for delivering maximum output power.
PF / 3002 .naJ 72 220 nF 100 nF
AUDIO POWER CS NIJMEGEN
TVA
220 nF
4
4
1 1
220 nF 220 nF
220 nF 4 BTL4/3 4 CIV
220 nF 4
Fig 13. Printed-circuit board layout (single-sided); components view
BTL1/2
1000 F
4
1000 F
4.7 nF
SVF
22 220 F F
+SE3-
+SE2- +SE1-
10 k +Vp IN2+ IN1+ IN3+ IN4+ VOL.Sgnd
1000 F
1000 F
-SE4+
150 F
MODE1
BTL3/4 MODE2
OFF 10 k SB ON MUTE ON
mce483
13.2.2 Power supply decoupling
Proper supply bypassing is critical for low-noise performance and high supply voltage ripple rejection. The respective capacitor location should be as close as possible to the device and grounded to the power ground. Proper power supply decoupling also prevents oscillations. For suppressing higher frequency transients (spikes) on the supply line a capacitor with low Equivalent Series Resistance (ESR), typical 100 nF, has to be placed as close as possible to the device. For suppressing lower frequency noise and ripple signals, a large electrolytic capacitor, e.g. 1000 F or greater, must be placed close to the device. The bypass capacitor on pin SVR reduces the noise and ripple on the mid rail voltage. For good Total Harmonic Distortion (THD) and noise performance a low ESR capacitor is recommended.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
17 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
13.3 Thermal behavior and heat sink calculation
The measured maximum thermal resistance of the IC package, Rth(j-mb), is 1.3 K/W. A calculation for the heat sink can be made, with the following parameters: Tamb(max) = 60 C (example) VCC = 17 V and RL = 4 (SE) Tj(max) = 150 C (specification) Rth(tot) is the total thermal resistance between the junction and the ambient including the heat sink. This can be calculated using the maximum temperature increase divided by the power dissipation: Rth(tot) = (Tj(max) - Tamb(max))/P At VCC = 17 V and RL = 4 (4 x SE) the measured worst-case sine-wave dissipation is 17 W; see Figure 8. For Tj(max) = 150 C the temperature raise, caused by the power dissipation, is: 150 C - 60 C = 90 C: P x Rth(tot) = 90 C Rth(tot) = 90/17 K/W = 5.29 K/W Rth(h-a) = Rth(tot) - Rth(j-mb) = 5.29 K/W - 2 K/W = 3.29 K/W This calculation is for an application at worst-case (stereo) sine-wave output signals. In practice music signals will be applied, which decreases the maximum power dissipation to approximately half of the sine-wave power dissipation of 9 W (see Section 8.2.2). This allows for the use of a smaller heat sink: P x Rth(tot) = 90 C Rth(tot) = 90/9 K/W = 10 K/W Rth(h-a) = Rth(tot) - Rth(j-mb) = 10 K/W - 2 K/W = 8 K/W
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
18 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
150 Tj (C)
(1) (2) (3) (4)
mce499
150 Tj (C)
mce500
(5)
(1)
(2)
(3)
(4)
(5)
100
100
50
50
0 8 12 16 20 24 28 VCC (V)
0 8 12 16 20 24 28 VCC (V)
Tamb = 25 C; external heat sink of 4.3 K/W. (1) RL = 1 . (2) RL = 2 . (3) RL = 3 . (4) RL = 4 . (5) RL = 8 .
Tamb = 25 C; external heat sink of 4.3 K/W. (1) RL = 2 . (2) RL = 4 . (3) RL = 6 . (4) RL = 8 . (5) RL = 16 .
a. 4 times various SE loads with music signals.
b. 2 times various BTL loads with music signals.
Fig 14. Junction temperature as a function of supply voltage for various loads with music signals
14. Test information
14.1 Quality information
The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
19 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
15. Package outline
DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm) SOT243-1
non-concave D x Dh
Eh
view B: mounting base side A2
d
B j E A
L3
L
Q c vM
1 Z e e1 wM
17 m e2
bp
0
5 scale
10 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A 17.0 15.5 A2 4.6 4.4 bp 0.75 0.60 c 0.48 0.38 D (1) 24.0 23.6 d 20.0 19.6 Dh 10 E (1) 12.2 11.8 e e1 e2 5.08 Eh 6 j 3.4 3.1 L 12.4 11.0 L3 2.4 1.6 m 4.3 Q 2.1 1.8 v 0.8 w 0.4 x 0.03 Z (1) 2.00 1.45
2.54 1.27
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT243-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION
ISSUE DATE 99-12-17 03-03-12
Fig 15. Package outline SOT243-1 (DBS17P)
TDA8948J_1 (c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
20 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
16. Soldering of SMD packages
This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 "Surface mount reflow soldering description".
16.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.
16.2 Wave and reflow soldering
Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:
* Through-hole components * Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging. The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable. Key characteristics in both wave and reflow soldering are:
* * * * * *
Board specifications, including the board finish, solder masks and vias Package footprints, including solder thieves and orientation The moisture sensitivity level of the packages Package placement Inspection and repair Lead-free soldering versus SnPb soldering
16.3 Wave soldering
Key characteristics in wave soldering are:
* Process issues, such as application of adhesive and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are exposed to the wave
* Solder bath specifications, including temperature and impurities
TDA8948J_1 (c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
21 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
16.4 Reflow soldering
Key characteristics in reflow soldering are:
* Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to
higher minimum peak temperatures (see Figure 16) than a SnPb process, thus reducing the process window
* Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
* Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13
Table 12. SnPb eutectic process (from J-STD-020C) Package reflow temperature (C) Volume (mm3) < 350 < 2.5 2.5 Table 13. 235 220 Lead-free process (from J-STD-020C) Package reflow temperature (C) Volume (mm3) < 350 < 1.6 1.6 to 2.5 > 2.5 260 260 250 350 to 2000 260 250 245 > 2000 260 245 245 350 220 220
Package thickness (mm)
Package thickness (mm)
Moisture sensitivity precautions, as indicated on the packing, must be respected at all times. Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 16.
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
22 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
temperature
maximum peak temperature = MSL limit, damage level
minimum peak temperature = minimum soldering temperature
peak temperature
time
001aac844
MSL: Moisture Sensitivity Level
Fig 16. Temperature profiles for large and small components
For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
23 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
17. Revision history
Table 14. Revision history Release date 20080227 Data sheet status Product data sheet Change notice Supersedes Document ID TDA8948J_1
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
24 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
18. Legal information
18.1 Data sheet status
Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet
[1] [2] [3]
Product status[3] Development Qualification Production
Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.
Please consult the most recently issued document before initiating or completing a design. The term `short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.
18.2 Definitions
Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
18.3 Disclaimers
General -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
18.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
19. Contact information
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com
TDA8948J_1
(c) NXP B.V. 2008. All rights reserved.
Product data sheet
Rev. 01 -- 27 February 2008
25 of 26
NXP Semiconductors
TDA8948J
4-channel audio amplifier
20. Contents
1 2 2.1 3 4 5 6 7 7.1 7.2 8 8.1 8.2 8.2.1 8.2.2 8.3 8.4 8.5 9 10 11 12 13 13.1 13.2 13.2.1 13.2.2 13.3 14 14.1 15 16 16.1 16.2 16.3 16.4 17 18 18.1 18.2 18.3 18.4 19 20 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Functional features . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Quick reference data . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional description . . . . . . . . . . . . . . . . . . . 5 Input configuration . . . . . . . . . . . . . . . . . . . . . . 5 Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output power measurement . . . . . . . . . . . . . . . 6 Headroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supply voltage ripple rejection . . . . . . . . . . . . . 7 Built-in protection circuits . . . . . . . . . . . . . . . . . 8 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal characteristics. . . . . . . . . . . . . . . . . . . 8 Static characteristics. . . . . . . . . . . . . . . . . . . . . 9 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9 Application information. . . . . . . . . . . . . . . . . . 15 Application diagrams . . . . . . . . . . . . . . . . . . . 15 Printed-circuit board . . . . . . . . . . . . . . . . . . . . 17 Layout and grounding . . . . . . . . . . . . . . . . . . . 17 Power supply decoupling . . . . . . . . . . . . . . . . 17 Thermal behavior and heat sink calculation . . 18 Test information . . . . . . . . . . . . . . . . . . . . . . . . 19 Quality information . . . . . . . . . . . . . . . . . . . . . 19 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 20 Soldering of SMD packages . . . . . . . . . . . . . . 21 Introduction to soldering . . . . . . . . . . . . . . . . . 21 Wave and reflow soldering . . . . . . . . . . . . . . . 21 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 21 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 22 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 24 Legal information. . . . . . . . . . . . . . . . . . . . . . . 25 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Contact information. . . . . . . . . . . . . . . . . . . . . 25 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section `Legal information'.
(c) NXP B.V. 2008.
All rights reserved.
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 27 February 2008 Document identifier: TDA8948J_1


▲Up To Search▲   

 
Price & Availability of TDA8948J

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X